

FUTEBOL UFMG User Manual

Authors Fernanda Aparecida R. Silva - Universidade Federal de Minas Gerais
Julio Cesar Tadeu Guimarães - Universidade Federal de Minas Gerais
Matheus Henrique do Nascimento Nunes - Universidade Federal de Minas Gerais
Fábio Alves Pereira - Universidade Federal de Minas Gerais
Marcos Magno de Carvalho - Universidade Federal de Minas Gerais
Vinicius Fonseca e Silva - Universidade Federal de Minas Gerais
Daniel Fernandes Macedo - Universidade Federal de Minas Gerais
Erik de Britto e Silva - Universidade Federal de Minas Gerais

Version 0.4
Abstract This document is a manual for the end-users of the FUTEBOL UFMG testbed. It

describes how to reserve the resources available at the UFMG testbed, and also
presents simple experiments that can be performed using those resources. Using
those examples, the user will be able to build his/her own experiments.

FUTEBOL – H2020 688941

UFMG Testbed user manual

This project has received funding from the European Union's
Horizon 2020 for research, technological development, and
demonstration under grant agreement no. 688941 (FUTEBOL),
as well from the Brazilian Ministry of Science, Technology and
Innovation (MCTI) through RNP and CTIC.

© FUTEBOL Consortium 2016-2019 Page 2 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 08/01/2018
Description of the allocation of
Raspberry Pi, USRP and Wi-Fi
on a PC.

Fernanda Aparecida R. Silva,
Julio Cesar Tadeu Guimarães,
Matheus Henrique do Nascimento
Nunes,
Daniel Fernandes Macedo

V0.2 Description of the allocation of
Advanticsys nodes.

Marcos Magno de Carvalho

V0.3 Description of the allocation of
4G resources

Vinicius Fonseca e Silva, Marcos
Magno de Carvalho, Erik de
Britto e Silva

V0.4 28/02/2019

- Updates to the description of
the allocation of 4G resources

- Description of the allocation of
LG Nexus smartphones

Vinicius Fonseca e Silva, Matheus
Henrique do Nascimento Nunes,
Erik de Britto e Silva, Marcos
Magno de Carvalho, Fábio Alves
Pereira

© FUTEBOL Consortium 2016-2019 Page 3 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

Table of Contents

1 - Introduction

2 - Overall Description of the Testbed
2.1 - Testbed Resources
2.2 - Maps of the Testbed
2.3 - Functional Layers of the Testbed
2.4 - Setting Up an Experiment

3. Experiments with Raspberry Pi
3.1 - Raspberry Pi RSpec Description
3.2 - Examples of Raspberry Pi Experiments

3.2.1 - Plain Raspberry Pi
3.2.2 - Raspberry Pi as Access Points and Wireless Stations

4 - Experiments with Wi-Fi
4.1 - RSpec Description
4.2 - Experiment Examples

4.2.1 - Wi-Fi Node without Ethanol
4.2.2 - Wi-Fi Node with Ethanol

5 - Experiments with USRP
5.1 - RSpec Description
5.2 - Experiment Example

6 - Experiments with Advanticsys Sensor Nodes
6.1 - RSpec Description
6.2 - Experiment Example

7 - Experiments with 4G Nodes
7.1 - EPC (First Way): Elements running inside Separate Machines

7.1.1 - RSpec Description
7.1.2 - Configuration

7.1.2.1 - Quick Way (Predefined Nodes)
7.1.2.2 - Complete Way (Any Node)
7.1.2.3 - Additional Configuration Steps: Enable the Connection of the LG Nexus
Smartphones

7.1.3 - Running
7.2 - EPC (Second Way): Elements running inside the Same Machine

7.2.1 - RSPec Description
7.2.2 - Configuration
7.2.3 - Running

7.3 - eNodeB
7.3.1 - RSPec Description

© FUTEBOL Consortium 2016-2019 Page 4 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

7.3.2 - Configuration
7.3.2.1 - Additional Configuration Steps: Enable the Connection of the LG Nexus
Smartphones

7.3.3 - Running
7.4 - USRP-based UE

7.4.1 - RSPec Description
7.4.2 - Configuration
7.4.3 - Running

7.5 - UE (LG Nexus-based)

8 - Experiments with LG Nexus Smartphones
8.1 - OpenSTF Description
8.2 - RSpec Description
8.3 - Configuring
8.4 - Running

© FUTEBOL Consortium 2016-2019 Page 5 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

1 - Introduction

The main objective of this document is to serve as a user guide for experimenters wishing to
make an experiment in the FUTEBOL UFMG testbed. As such, we describe the resources
available, how to make a reservation of those resources and we also present simple
experiments using each type of resource.

We assume that the reader is familiar with jFed, that is, the reader already has an account in
jFed, and already knows how to book resources using the graphic user interfaces. If you are
not familiar with jFed, please read first the tutorial available at
http://futebol.dcc.ufmg.br/jfed_account.html#getaccount.

Readers wishing to understand how the FUTEBOL UFMG testbed reserves resources are
directed to the FUTEBOL deliverables, most notably the deliverables related to Work
Package 4 - Converged Optical/Wireless Control Framework. Those can be obtained in the
main FUTEBOL web site at http://www.ict-futebol.org.br.

If you feel that there is something missing from this manual, or that a certain point requires
further explanation, please contact the FUTEBOL UFMG team using the e-mail
web-futebol@dcc.ufmg.br.

2 - Overall Description of the Testbed
The UFMG testbed was designed to allow the experimentation in a number of wireless
technologies related to the SDN and/or IoT concepts. Thus, UFMG provides a rich set of
resources, from VMs to resource-constrained wireless devices. It also supports a number of
wireless technologies, such as Wi-Fi and Bluetooth, and many others using programmable
radios (USRPs). Further, the testbed supports SDN by using a physical OpenFlow switch.

2.1 - Testbed Resources

The resources made available to experimenters by the UFMG’s Testbed include:

● Eight Dell Alienware Alpha R2 Mini Gaming PCs (MiniPCs) as a platform for
experimentation on Wi-Fi, Bluetooth and USRP. The MiniPCs run Ubuntu 16.04.2
LTS linux. Each Mini PC is equipped with a Software-defined Radio as follows:

© FUTEBOL Consortium 2016-2019 Page 6 of 53

http://futebol.dcc.ufmg.br/jfed_account.html#getaccount
http://www.ict-futebol.org.br/
mailto:web-futebol@dcc.ufmg.br

FUTEBOL – H2020 688941

UFMG Testbed user manual

○ Four USRP B200 SDR Kits with GPSDO and two 2.4GHz antennae 1

○ Four USRP B210 SDR Kits with GPSDO and four 2.4GHz antennae

● Sixteen Advanticsys MTM-CM5000-MSP IoT Nodes. It is an IEEE 802.15.4 WSN

mote fully compatible with TelosB platform, and TinyOS 2.x & ContikiOS Compatible.
It has temperature, relative humidity and light sensors. They are connected via an
USB interface. More information at
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html.

● Sixteen Raspberry Pi 3 Model B. These raspberries have a Quad Core 1.2GHz

Broadcom BCM2837 64bit CPU, with 1GB RAM, one gigabit ethernet port, one
wireless LAN and Bluetooth Low Energy (BLE) on board. The raspberries run
Raspbian Jessie OS. More information can be found at
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

● Eight LG Nexus 5X smartphones. More details about the hardware and software

specifications can be found at https://www.gsmarena.com/lg_nexus_5x-7556.php.

● One OpenFlow switch Pica8 model P-3297. This switch is a 1 RU low-latency, high
performance Ethernet switch with 48 ports 1Gigabit 1000Base-T and 4 slots SFP 10
Gigabit. It is equipped with Triumph 2 switch ASIC with extended TCAM. The switch
comes pre-loaded with PicOS software for full Layer-2, Layer-3, and OpenFlow 1.4. It
can handle 4096 VLANs, 32k MAC addresses, 12k routes, 8k MPLS labels. It
implements Open-vSwitch (OVS) 2.0 and provides MPLS over OVS. More
information can be seen at
http://www.pica8.com/wp-content/uploads/2015/09/pica8-datasheet-48x1gbe-p3297.

pdf

● One DELL server model PowerEdge R430 used as virtualization server, equipped
with one Intel Xeon 8 cores 5-2609 1.7 GHz, 8GB RAM, 1TB SATA Hot-plug Hard
Drive, 4 ethernet 1 gigabit NIC. This server runs Ubuntu 16.04.2 LTS linux with KVM
virtualization platform.

The switches and the virtualization server are indirectly involved in the experiments, being
used in the infrastructure that supports the testbed. The MiniPCs, USRPs, Raspberries and
Smartphones are placed on the ceiling in two laboratories in UFMG as shown in the Figure
below. Figure 1 also shows the placement of the switches and virtualization server.

2.2 - Maps of the Testbed

The resources are placed in the testbed as indicated in the following maps:

1 In order to provide more accurate timings for the SDR experiments, the hardware is fitted with
GPS-disciplined oscillators (GPSDO).

© FUTEBOL Consortium 2016-2019 Page 7 of 53

https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.gsmarena.com/lg_nexus_5x-7556.php
http://www.pica8.com/wp-content/uploads/2015/09/pica8-datasheet-48x1gbe-p3297.pdf
http://www.pica8.com/wp-content/uploads/2015/09/pica8-datasheet-48x1gbe-p3297.pdf

FUTEBOL – H2020 688941

UFMG Testbed user manual

Map of the placement of the USRPs, mini PCs, Raspberry Pis and Smartphones

Map of the placement of the Advanticsys Sensor Nodes

By definition, during the allocation, the choice of the equipment used by a resource is made
in a random form. That way, the user have no power about the physical location of the
equipment used. If a user want to allocate a resource in a specific equipment, he/she can
use the attribute component id on the tag node in the RSpec. The following example shows
the allocation of a specific USRP:

© FUTEBOL Consortium 2016-2019 Page 8 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

<node client_id="node1" exclusive="false"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+node+11">
 <sliver_type name="usrp-vm">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+gnuradio"/>
 </sliver_type>
</node>

The number that the attribute component id are given as param represents the id of the
resource, following the organization of testbed map.

2.3 - Functional Layers of the Testbed
Logically, one can think of the testbed as consisting of four layers: The bottom layer provides
the physical elements, such as servers, raspberries, arduino, XBees, storage, etc., that can
be controlled through one hypervisors. The next layer corresponds to the virtualized
testbed, comprising containers/VM associated to the physical devices. Finally, at the top sits
the definition of each experiment that uses the resources provided by the lower layer.

Functional layers

2.4 - Setting Up an Experiment
Users will be able to setup an experiment using jFed. After the user sends the login
information, the AM will authenticate the user, tell him/her which resources will be available
to them through RSpecs, and interact with the CBTM on behalf of the user in order to

© FUTEBOL Consortium 2016-2019 Page 9 of 53

http://doc.fed4fire.eu/getanaccount.html
http://doc.fed4fire.eu/getanaccount.html

FUTEBOL – H2020 688941

UFMG Testbed user manual

instantiate the available resources. The AM uses the GENI v3 API which is written as a
wrapper of the reference AM.

3. Experiments with Raspberry Pi
The Raspberries PI are single-board computers, used in this testbed to simulate Access
Points, Wireless Stations or plain computers. This section describes how to allocate a
Raspberry PI and how to run simple experiments to check the operability of the devices.

3.1 - Raspberry Pi RSpec Description
The Raspberry Pi nodes can be allocated as Access Points, Wireless Stations or Without
Both Configurations. Note that the raspberry Pi is selected by using the sliver type
raw-raspberry. The example below presents an RSPEC for a Raspberry Pi mote operating
as an Access Point:

<node client_id="node1" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

 <sliver_type name="raw-raspberry" mode="ap">
 <wifi-settings ssid="eee" psk="iii" auth="jjj" channel="www"
tx_power="xxx" sens="yyy" rts="zzz"/>
 </sliver_type>
 </node>

The example below shows an RSPEC for allocating a Raspberry Pi as a Wireless Station
(note that the mode of the Wi-Fi card is defined by the mode parameter of the sliver, being
either ap or sta):

<node client_id="node1" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

 <sliver_type name="raw-raspberry" mode="sta">
 <wifi-settings ssid="eee" psk="iii" auth="jjj" tx_power="xxx"
sens="yyy"/>
 </sliver_type>
 </node>

The wifi-settings tag holds the configuration items for the Wireless interface. The options in
this tag are:

● ssid: Defines the SSID for the network

© FUTEBOL Consortium 2016-2019 Page 10 of 53

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3

FUTEBOL – H2020 688941

UFMG Testbed user manual

● psk: Defines the password for the network
● auth: Defines the authentication type for the network, should be one of the following:

○ WEP/WEP2
○ WPA-PSK/WPA2-PSK

● channel: Defines in which channel the network is going to be distributed
● tx_power: Defines the transmission power for the antenna (in dBm)

○ “auto” for automatically chosen transmission power
○ A numeric (integer) value

● sens: set the sensitivity threshold
○ “auto” for automatically chosen sensitivity threshold
○ A numeric (integer) value.

● rts: adds a RTS/CTS handshake before each packet transmission to make sure that
the channel is clear.The Arduino is programmed through raspberry pi terminal or IDE
where the experimenter can upload the arduino software to manage the sensors. The
sensor are plugged on pins X, Y and Z for luminosity, humidity and temperature,
respectively. A default arduino software is provided with sensor data update period of
W ms.

○ “off” for no RTS
○ A numeric (integer) value

The example below shows an RSPEC for allocating the Raspberry Pi without configuring its
Wi-Fi interface:

<node client_id="node1" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

 <sliver_type name="raw-raspberry">
 </sliver_type>
</node>

3.2 - Examples of Raspberry Pi Experiments

3.2.1 - Plain Raspberry Pi
The example below show a complete RSpec to allocate a plain Raspberry Pi.

© FUTEBOL Consortium 2016-2019 Page 11 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

<?xml version='1.0'?>
<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request"
generated_by="jFed RSpec Editor"
generated="2017-11-10T09:40:59.688-02:00"
xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"
xmlns:delay="http://www.protogeni.net/resources/rspec/ext/delay/1"
xmlns:jfed-command="http://jfed.iminds.be/rspec/ext/jfed-command/1"
xmlns:client="http://www.protogeni.net/resources/rspec/ext/client/1"
xmlns:jfed-ssh-keys="http://jfed.iminds.be/rspec/ext/jfed-ssh-keys/1"
xmlns:jfed="http://jfed.iminds.be/rspec/ext/jfed/1"
xmlns:sharedvlan="http://www.protogeni.net/resources/rspec/ext/shared-vl
an/1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3
http://www.geni.net/resources/rspec/3/request.xsd ">
 <node client_id="node0" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

<sliver_type name="raw-raspberry">
</sliver_type>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="282.0"

y="109.5"/>
 </node>
</rspec>

After the allocation of the Raspberry Pi node is done, the device can be tested using the
simple code below:

#include <stdio.h>
#include <stdlib.h>

int main(){
 printf("Hello World!\n");
 return 0;
}

The example code can be downloaded, compiled and executed as follows:

wget futebol.dcc.ufmg.br/documentation/examples/helloword_raspberrypi.c

gcc -c helloword_raspberrypi.c

gcc helloworld -o helloword_raspberrypi.o

./helloworld

© FUTEBOL Consortium 2016-2019 Page 12 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

TERMINAL OUTPUT

Hello World!

3.2.2 - Raspberry Pi as Access Points and
Wireless Stations
The following example shows a complete RSpec to allocate one Raspberry Pi as Access
Point and one Raspberry Pi as a Wireless Station:

<?xml version='1.0'?>
<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request"
generated_by="jFed RSpec Editor"
generated="2017-11-10T09:40:59.688-02:00"
xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"
xmlns:delay="http://www.protogeni.net/resources/rspec/ext/delay/1"
xmlns:jfed-command="http://jfed.iminds.be/rspec/ext/jfed-command/1"
xmlns:client="http://www.protogeni.net/resources/rspec/ext/client/1"
xmlns:jfed-ssh-keys="http://jfed.iminds.be/rspec/ext/jfed-ssh-keys/1"
xmlns:jfed="http://jfed.iminds.be/rspec/ext/jfed/1"
xmlns:sharedvlan="http://www.protogeni.net/resources/rspec/ext/shared-vl
an/1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3
http://www.geni.net/resources/rspec/3/request.xsd ">
 <node client_id="node0" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

<node client_id="node0" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

 <sliver_type name="raw-raspberry" mode="ap">
 <wifi-settings ssid="test" psk="password" auth="wpa" channel="7"
tx_power="auto" sens="auto" rts="off"/>
 </sliver_type>
 </node>
<node client_id="node1" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

 <sliver_type name="raw-raspberry" mode="sta">
 <wifi-settings ssid="test" psk="password" auth="wpa"
tx_power="auto" sens="auto"/>
 </sliver_type>

© FUTEBOL Consortium 2016-2019 Page 13 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

 </node>
 </node>

</rspec>

When both allocations of the Raspberries Pi are done, the user is able to connect the
wireless station to the access point by changing the file
/etc/wpa_supplicant/wpa_supplicant.conf in the station. The user should add the following
lines in the file:

network={

 ssid="test"
 psk="password"
 key_mgmt=WPA-PSK

}

After, also in the wireless station, the wpa_supplicant service must be started with the
command below:

 sudo wpa_supplicant -Dnl80211 -c/etc/wpa_supplicant/wpa_supplicant.conf

-iwlan0 -dt

Once this step is executed, it will be possible to verify the connection between the station
and the access point using NetCat, by using the following command to open a port in the
access point:

user@<access point> nc -l -vvv -p 5000

Next, use the command below in the station to establish the communication with that port:

user@<wireless station> nc -vvv 192.168.0.1 (access point IP) 5000

TERMINAL OUTPUT

If the allocation and configuration processes are performed successfully, all that is typed in
the wireless station terminal will be shown the access point terminal and vice versa.

4 - Experiments with Wi-Fi
It is possible to use the miniPCs to perform experiments using Wi-Fi. The Mini PCs use a
Dell Dual-band Wireless AC 8620 chipset, which has 2x2 MIMO and supports IEEE 802.11
a, b, g, n and ac standards. The Raspberry Pis can also be used for Wi-Fi experiments

© FUTEBOL Consortium 2016-2019 Page 14 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

(please check the appropriate section), however the Mini PCs have a much wider
configuration range.

Besides using the command line tools to configure the Wi-Fi, it is also possible to use a SDN
interface called Ethanol to control them. Ethanol is able to control a number of parameters of
the wireless interface from a SDN controller. Those can be used in SDN-based experiments,
or as a tool to control the Wi-Fi links in your experiment. For example, you can force a node
disconnect using Ethanol, to emulate a node failure. The full documentation of the Ethanol
API can be found in github:
https://github.com/h3dema/ethanol_controller/tree/master/ethanol/documentation

4.1 - RSpec Description
The Wi-Fi nodes can be allocated as a machine with wireless network card. Note that the
Wi-Fi node is selected by using the sliver type raw-wifi. The example below presents an
RSPEC for Wi-Fi node, using Ubuntu 16.04:

<node client_id="node0" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am">

<sliver_type name="raw-wifi">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+ubuntu16"/>

</sliver_type>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="176.0"

y="117.0"/>
</node>

The example below shows an RSPEC for allocating the Wi-Fi node using Ethanol:

<node client_id="node0" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

<sliver_type name="raw-wifi">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+ethanol"/>

</sliver_type>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="50.0"

y="544.7097400940887"/>
 </node>

© FUTEBOL Consortium 2016-2019 Page 15 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

4.2 - Experiment Examples

4.2.1 - Wi-Fi Node without Ethanol
Below shows an RSPEC for allocating the Wi-Fi node for this experiment:

<?xml version='1.0'?>
<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request"
generated_by="jFed RSpec Editor"
generated="2017-09-18T15:37:48.662-03:00"
xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"
xmlns:delay="http://www.protogeni.net/resources/rspec/ext/delay/1"
xmlns:jfed-command="http://jfed.iminds.be/rspec/ext/jfed-command/1"
xmlns:client="http://www.protogeni.net/resources/rspec/ext/client/1"
xmlns:jfed-ssh-keys="http://jfed.iminds.be/rspec/ext/jfed-ssh-keys/1"
xmlns:jfed="http://jfed.iminds.be/rspec/ext/jfed/1"
xmlns:sharedvlan="http://www.protogeni.net/resources/rspec/ext/shared-vl
an/1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3
http://www.geni.net/resources/rspec/3/request.xsd ">
 <node client_id="node0" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

<sliver_type name="raw-wifi">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+ubuntu16"/>

</sliver_type>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="176.0"

y="117.0"/>

 </node>
 <node client_id="node1" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

<sliver_type name="raw-wifi">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+ubuntu16"/>

</sliver_type>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="539.0"

y="106.0"/>
 </node>
 <node client_id="node2" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"

© FUTEBOL Consortium 2016-2019 Page 16 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

>

<sliver_type name="raw-wifi">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+ubuntu16"/>

</sliver_type>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="358.0"

y="257.0"/>
 </node>
</rspec>

After allocating the machines with wifi, follow the steps below:

1. Define the IP addresses so that the hosts are on the same network.

root@<node 0>Ifconfig wlp2s0 192.168.0.1 netmask 255.255.255.0 up

root@<node 1>Ifconfig wlp2s0 192.168.0.10 netmask 255.255.255.0 up

root@<node 2>Ifconfig wlp2s0 192.168.0.100 netmask 255.255.255.0 up

2. Using hostAPd it is possible to create an access point using a configuration file, for

example named hostapd.conf, such as the one below:

interface=wlp2s0

hw_mode=a

channel=149

ieee80211d=1

country_code=BR

ieee80211n=1

ieee80211ac=1

wmm_enabled=1

ssid=test

3. Then run hostapd on the AP machine with this file

hostapd hostapd.conf

4. Next, establish a connection between the hosts and the access point.

iwconfig wlp2s0 essid test mode managed

5. You can test the performance with the Iperf tool, which comes pre-installed in the
image. In the server, run:

© FUTEBOL Consortium 2016-2019 Page 17 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

 iperf -s

In the client, please run:

iperf -c 192.168.0.100 (server_IP) -d

4.2.2 - Wi-Fi Node with Ethanol
In this example we will make a simple test, in which the Ethanol controller denies a clinet
with a certain MAC address to associate in the Wi-Fi network. We show below an RSPEC
that allocates two Wi-Fi nodes running Ethanol. This is done by selecting the ethanol image
on a wifi resource.

<?xml version='1.0'?>
<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request"
generated_by="jFed RSpec Editor"
generated="2017-11-13T09:04:35.837-02:00"
xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"
xmlns:delay="http://www.protogeni.net/resources/rspec/ext/delay/1"
xmlns:jfed-command="http://jfed.iminds.be/rspec/ext/jfed-command/1"
xmlns:client="http://www.protogeni.net/resources/rspec/ext/client/1"
xmlns:jfed-ssh-keys="http://jfed.iminds.be/rspec/ext/jfed-ssh-keys/1"
xmlns:jfed="http://jfed.iminds.be/rspec/ext/jfed/1"
xmlns:sharedvlan="http://www.protogeni.net/resources/rspec/ext/shared-vl
an/1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3
http://www.geni.net/resources/rspec/3/request.xsd ">
 <node client_id="node0" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

<sliver_type name="raw-wifi">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+ethanol"/>

</sliver_type>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="50.0"

y="544.7097400940887"/>
 </node>
 <node client_id="node1" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

<sliver_type name="raw-wifi">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+ethanol"/>

© FUTEBOL Consortium 2016-2019 Page 18 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

</sliver_type>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1"

x="859.0277178762544" y="25.0"/>
 </node>
</rspec>

After allocating the Wi-Fi node with configuring its Ethanol, we must configure it properly. In
the first part of the experiment, we must modify the Ethanol controller so that it denies the
connection from a certain client:

cd /home/ethanol_controller/ethanol/ethanol
vim vap.py

Modify this function:

 def evUserAssociating(mac_station):
 if mac_station == "e4:a7:a0:4e:f0:ca":
 return False
 else:
 return True

The AP will not accept the association of the station with MAC address "e4:a7:a0:4e:f0:ca".
Type the following command to initialize the Ethanol controller:

cd /home/ethanol_controller/pox
./pox.py ethanol.server

Initializing the Ethanol AP: Here is a sample configuration file for HostAPD (you can create
it using the command "vim /hostapd-2.6/hostapd/host.conf"

interface=wlp2s0

hw_mode=a

channel=149

© FUTEBOL Consortium 2016-2019 Page 19 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

ieee80211d=1

country_code=BR

ieee80211n=1

ieee80211ac=1

wmm_enabled=1

ssid=test

Copy the file mycert.pem into the /hostapd-2.6 and /hostapd-2.6/hostapd directories and the
file ethanol.ini into the /etc/ directory using the following commands:

cd ethanol_hostapd/certificate
cp mycert.pem ethanol_hostapd/hostapd-2.6

cp ethanol_hostapd/hostapd-2.6/hostapd

cd ..
cd src/ini
cp ethanol.ini /etc/ethanol.ini

cd ../../hostapd
make clean

make ethanol

./hostapd host.conf

The station with the MAC address is blocked when trying to connect:

© FUTEBOL Consortium 2016-2019 Page 20 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

The logs on the AP show that is does not accept the connection of the station with MAC
address "e4:a7:a0:4e:f0:ca":

Then, we can modify the controller code to accept connections from any station by changing
the evUserAssociating function to the following code.

def evUserAssociating(mac_station):
 return True

The screenshot below shows that the station is now able to connect.

© FUTEBOL Consortium 2016-2019 Page 21 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

For more uses of Ethanol see https://github.com/h3dema/ethanol_devel

5 - Experiments with USRP

The USRP (Universal Software Radio Peripheral) is a software-defined radio, which is able
to run arbitrary code using an FPGA as well as on the CPU of the server. It can be used to
run any wireless standard (including existing standards or even a protocol that has been
created by the experimenter), as long as the operating frequency and other parameters of
the communication are within the accepted range of the USRP card. This section describes
how to book an USRP and how to run a very simple experiment that checks for the spectrum
usage on a certain frequency.

5.1 - RSpec Description
The USRP nodes are allocated as virtual machines containing USRP boards attached via
USB. Each MiniPC on the testbed can support one USRP node at a time. The RSPEC for
allocating an USRP node must contain the following tags:

<node client_id="node1" exclusive="false"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

 <sliver_type name="usrp-vm">
 <disk_image

© FUTEBOL Consortium 2016-2019 Page 22 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+IMG_TYPE"/>
 </sliver_type>
</node>

The bold part inside of the “node” tag indicates that this node is being allocated in the UFMG
FUTEBOL testbed. It is automatically filled with this information when the UFMG testbed is
selected on the dropdown menu on jFed. The name component on the “sliver_type” tag
indicates that this node is composed of a virtual machine containing an USRP board
attached to it via USB. Inside the “sliver_type” tag is the “disk_image” tag. This tag selects
the type of virtual machine that will be allocated. The “name” component inside this tag
indicates which type of virtual machine is being allocated, and also reinforces that this
machine is being allocated inside of the UFMG Testbed. The string on the “name”
component must follow the structure presented above. The IMG_TYPE can be one of the
following:

● gnuradio: Selects a machine with the basic gnuradio software installed
● openlte: Selects a machine with the basic gnuradio software and the OpenLTE

software installed
The “disk_image” tag is optional. When the “sliver_type” selected is “usrp-vm”, the default
image selected for the machine is “gnuradio”.

5.2 - Experiment Example

In this experiment we are going to run a spectrum analyser, which will use the USRP to
show how is the usage of the medium on a certain frequency. To that end, we will instantiate
a USRP resource on the UFMG FUTEBOL testbed. The following RSPEC can be used to
instantiate a single VM with a USRP:

<?xml version='1.0'?>
<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request"
generated_by="jFed RSpec Editor"
generated="2017-06-09T13:54:59.535-03:00"
xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"
xmlns:jfedBonfire="http://jfed.iminds.be/rspec/ext/jfed-bonfire/1"
xmlns:delay="http://www.protogeni.net/resources/rspec/ext/delay/1"
xmlns:jfed-command="http://jfed.iminds.be/rspec/ext/jfed-command/1"
xmlns:client="http://www.protogeni.net/resources/rspec/ext/client/1"
xmlns:jfed-ssh-keys="http://jfed.iminds.be/rspec/ext/jfed-ssh-keys/1"
xmlns:jfed="http://jfed.iminds.be/rspec/ext/jfed/1"
xmlns:sharedvlan="http://www.protogeni.net/resources/rspec/ext/shared-vl
an/1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3
http://www.geni.net/resources/rspec/3/request.xsd ">

© FUTEBOL Consortium 2016-2019 Page 23 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

 <node client_id="node0" exclusive="false"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

 <sliver_type name="usrp-vm">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+gnuradio"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="396.0"
y="77.5"/>
 </node>
 <node client_id="node1" exclusive="false"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
>

 <sliver_type name="usrp-vm">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+gnuradio"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="52.5"
y="76.5"/>
 </node>
</rspec>

After the VM is instantiated, you can execute commands to perform experiments in the
USRP. The first basic command is to check if the equipment is detected. To do this, run
the command uhd_find_devices. This command output will indicate the model, serial
number and name of the USRP that is connected to the virtual resource that you
allocated.

© FUTEBOL Consortium 2016-2019 Page 24 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

On the ‘rx_node’, run the following code. This code will run a frequency analyzer at
2.55GHz, sampling the medium at a rate of 2MHz. This frequency analyzer runs on the
command line (because it may be too slow to open a graphic user interface from the
testbed).

cd /usr/lib/uhd/examples
./rx_ascii_art_dft --freq 2550000000 --rate 2000000 --ref-lvl -50

You should be able to see the ascii representation of the transmitted waveform
spectrum, as illustrated below:

6 - Experiments with Advanticsys Sensor Nodes

The Advanticsys MTM-CM5000-MSP is a wireless sensor node with limited processing and
network resources. It is recommended for experiments on wireless sensor networks or
related to Internet of Things with very resource constrained devices. The nodes transmit
wirelessly using the standard IEEE 802.15.4. In order to program the nodes, the programmer
must create a binary integrating his/her own code with one operating system, which is either
TinyOS or Contiki. The Advanticsys is a node that is compatible to any software developed
for the TelosB platform. It has temperature, relative humidity and light sensors. They are
connected via an USB interface. More information at
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html.

At the moment, the FUTEBOL UFMG testbed supports programming the Advanticsys using
the TinyOS operating system. In the future we plan to support Contiki as well.

© FUTEBOL Consortium 2016-2019 Page 25 of 53

https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html

FUTEBOL – H2020 688941

UFMG Testbed user manual

6.1 - RSpec Description
Sensor nodes must be allocated together with a virtual machine that contains the system
responsible for managing the sensor nodes. To do this, the sliver_type attribute is set to
telosb-vm and disk_image as telosb. For each instance of the sensor nodes, just configure
the sliver_type as raw-telosb. Note that it is not necessary to use the disk_image attribute
for the sensor nodes.

You can specify which node to allocate according to the ID shown in Figure 2 by configuring
the component_id attribute of each node tag with the specific number of the sensor node.
The example below shows an RSPEC with one virtual machine (named node 0) and two
sensor nodes (60 and 66, named node 1 and node 2)

<node client_id="node0" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am">

<sliver_type name="telosb-vm">
 <disk_image name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+telosb"/>

</sliver_type>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="176.0"

y="117.0"/>
</node>

<node client_id="node1" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am+node+60">

<sliver_type name="raw-telosb"/>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="176.0"

y="117.0"/>
</node>

<node client_id="node2" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am+node+66">

<sliver_type name="raw-telosb"/>
<location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="176.0"

y="117.0"/>
</node>

© FUTEBOL Consortium 2016-2019 Page 26 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

6.2 - Experiment Example
In this experiment we will demonstrate the operation of the applications Oscilloscope and
BaseStation which are both examples of the TinyOS Operating System. The first is a simple
demo of data collection responsible for periodically the voltage sensor and transmitting on
the radio a message with 10 consecutive readings. The second application receives
messages from the radio and forwards them to the PC through the USB port. Below we
demonstrate the experience, being allocated node 60 for oscilloscope, node 66 for
BaseStation and a virtual machine.

1 - Program submission.
After the nodes are allocated, you must first send your application to the allocated virtual
machine, compile it through the TinyOS operating system, and compress the resulting files
with a .zip extension. We then send the Oscilloscope and BaseStation folders through the
Transfer Files option in Jfed.

© FUTEBOL Consortium 2016-2019 Page 27 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

Now, access the virtual machine allocated through the terminal (node 0 in Jfed), navigate to
the folder of your application and execute the command make telosb to generate the
executable that will be installed in advanticsys nodes.

© FUTEBOL Consortium 2016-2019 Page 28 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

The build folder will be automatically created, containing the executable and other necessary
files. Navigate to it and run the command below to compress the files.

cd build/
zip -r [desired name] telosb/

As an alternative, you can compile and compress the data on your own computer and 2

transfer the .zip file through the Jfed Transfer File function for this, see how to install the
TinyOS Operating System on your computer.

2 - Installation of applications on sensor nodes.
To perform the installation of the applications on the sensor nodes, simply run the command
below on the terminal of the virtual machine (node 0 in the example allocation).

2 http://tinyos.stanford.edu/tinyos-wiki/index.php/Getting_Started_with_TinyOS

© FUTEBOL Consortium 2016-2019 Page 29 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

submit - node 60 -file osciloscope.zip

submit - node 66 -file basestatio.zip

Note that the -node and -file parameters specify which node to install the application and the
file name, respectively.

On your terminal you will receive a success message or some error message. In the event of
an error, repeat the installation procedure. On success, the sensor nodes will be working
according to their application and the collected data will be saved in text files during the
useful period of the experiment.

3 - Download your experiment data.

At any time during your experiment time you can request the data collected through the
receiving node, by means of the command below, which should be executed in the terminal
of the virtual machine.

recv -node 66

Notice that the recv command calls the procedure for receiving the files, and the -node
parameter specifies which node you want to receive the data from. The procedure is
responsible for sending to the allocated virtual machine a compressed file that contains the
data of the experiment. You can view this file in the VM's personal folder or download it
through Jfed.

4 - Output file - Experiment data
Your application should be able to write the data collected on the sensor's USB port. Below
are the fields that are in the output file for our example experiment

destination: [] source: [] length: [] group: [] type: [] data: []

To know more about the fields on this experiment,please visit the official page of tinyos..For
our example, see the output file.

© FUTEBOL Consortium 2016-2019 Page 30 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

7 - Experiments with 4G Nodes
These experiments are recommended for works that demand the use of a cellular
infrastructure with few clients.

The 4G scenario can be built on two different ways. The first one (sections 7.1, 7.3 and
7.4-5) is composed by at least 5 nodes, where three of them represent the Evolved Packet
Core (EPC), composed by the Home Subscriber Server (HSS), the Mobility Management
Entity (MME) and the Serving/Packet Data Network Gateway (SP-GW). The fourth node
emulates the eNodeB, which creates a 4G cell using the Universal Software Radio
Peripheral (USRP). Finally, the fifth node is the User Equipment (UE), which connects to the
eNodeB also through an USRP.

On the other side, the second way (sections 7.2 and 7.3 and 7.4-5) is composed by at least
3 nodes, being one for the whole EPC (HSS+MME+SP-GW), one for the eNodeB and one
for the UE. Below is presented the process to allocate the resources and configure the 4G
nodes for each way.

7.1 - EPC (First Way): Elements running inside
Separate Machines

In this scenario, the EPC elements are available at the FUTEBOL UFMG testbed in the
same Virtual Machine (VM) image, and each EPC element (HSS/MME/SP-GW) needs to be

© FUTEBOL Consortium 2016-2019 Page 31 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

allocated in a separate miniPC. The EPC elements are implemented by Open Air Interface
(OAI) (see http://www.openairinterface.org/?page_id=25 for more details). In this scenario, it
is possible to allocate a maximum of 4 UEs at the same time, since only 8 miniPCs are
available at the testbed.

7.1.1 - RSpec Description
As stated in the previous section, the EPC elements (HSS/MME/SP-GW) must be allocated
using the same VM image, which contains all the software responsible for the authentication
and management of the connected UEs as well as the eNodeB. To do this, the sliver_type
attribute is set to usrp-vm and disk_image is set to oai_epc.

You can specify any testbed node to allocate each of the above elements. However, some
nodes were previously configured in order to make the setup process more simple. This
manual will give the instruction to both cases, being the first one using the pre-configured
nodes (see Section 7.1.2.1 for more details), and the second one using any node, which
needs more steps to be configured (see Section 7.1.2.2 for more details).

The code below shows an RSpec example which allocates the EPC elements.

<node client_id="HSS" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am+node+11"
>

 <sliver_type name="usrp-vm">
<disk_image

name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+oai_epc"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="119.0"
y="63.5"/>
</node>

<node client_id="MME" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am+node+16"

>

 <sliver_type name="usrp-vm">
<disk_image

name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+oai_epc"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="270.0"
y="63.5"/>

© FUTEBOL Consortium 2016-2019 Page 32 of 53

http://www.openairinterface.org/?page_id=25

FUTEBOL – H2020 688941

UFMG Testbed user manual

</node>

<node client_id="SPGW" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am+node+17"
>

 <sliver_type name="usrp-vm">
<disk_image

name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+oai_epc"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="428.5"
y="61.5"/>
</node>

Each 4G element can be allocated at any miniPC from the testbed. This can be done
according to the ID specified at the component_id attribute of each node tag with the specific
number of the miniPC. For VMs, the ID has the “1X” format, where X represents the miniPC
ID according to its position at the testbed.

In the code above, it can be observed that nodes 11, 16 and 17 were allocated to run the
HSS, the MME and the SP-GW respectively. Each node was named according to its specific
role, using the client_id attribute of the node tag.

Each EPC element, at the above mentioned nodes, was pre-configured in order to make the
setup process more simple. It is also possible to run the EPC at any miniPC, however, the
configuration phase will take more time, since more parameters will need to be redefined.
More details of both options are available at sections 7.1.2.1 and 7.1.2.2. If you wish to use
OAI to connect the LG Nexus smartphones available at the testbed, please refer to the
additional configuration steps available at Section 7.1.2.3.

7.1.2 - Configuration

As stated before, this manual gives two configuration options for the OAI EPC: The first one
(Section 7.1.2.1) has the EPC elements at predefined positions at the testbed (nodes 11, 16
and 17), with most of the configuration phase concluded. The second option (Section
7.1.2.2) gives to the user the option to configure the EPC at any position, instructing how to
configure all the parts needed to have a funcional EPC. For the first option, this manual will
use the same RSpec presented in Section 7.1.1.

Finally, as stated before, if you wish to use the LG Nexus smartphones along with OAI,
please refer to Section 7.1.2.3 in order to run the additional configuration steps.

© FUTEBOL Consortium 2016-2019 Page 33 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

7.1.2.1 - Quick Way (Predefined Nodes)

1 - After the allocation of the nodes 11, 16 and 17, according to the RSpec presented in
Section 7.1.1, open one terminal for each EPC element, and in all of them run the following:

sudo su

cd /home/oai-epc/openair-cn/SCRIPTS/

2 - At each EPC element, insert the GTP kernel module by running the following command:

modprobe gtp

7.1.2.2 - Complete Way (Any Node)

1 - Open a terminal for each EPC element. At each terminal, open the /etc/hosts file.
Associate the names “X.testbed.lan X” (being X ‘hss’, ‘mme’ or ‘spgw’) to the IP 127.0.1.1,
like the example for the HSS below:

127.0.0.1 localhost

127.0.1.1 hss.testbed.lan hss

192.168.0.X mme.testbed.lan mme #X:MME’s IP address at eth0

192.168.0.Y spgw.testbed.lan spgw #Y:SPGW’s IP address at eth0

2 - At each terminal, change the content of the /etc/hostname file to hss, mme and spgw.

3 - Change the hostname of each EPC element to hss, mme and spgw, like the example
below for the HSS:

hostname hss

4 - Reopen all the terminals in order to make the hostname changes.

5 - At the HSS, open the file hss_fd.conf at /usr/local/etc/oai/freeDiameter/ and change the
MME’s IP address located at the last line of the file, inside the ConnectPeer parameter.

ConnectPeer = "mme.testbed.lan" { ConnectTo = "192.168.0.X"; No_TLS;

© FUTEBOL Consortium 2016-2019 Page 34 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

}; #X:MME’s IP address at eth0

6 - At the MME, open the file mme.conf at /usr/local/etc/oai/ and change the SP-GW’s IP
address in the following parameter:

S-GW binded interface for S11 communication (GTPV2-C), if none

selected the ITTI message interface is used

SGW_IPV4_ADDRESS_FOR_S11 = "192.168.0.X/24"; #Y:

SP-GW's IP address at eth0

7 - Still at the MME, open the file mme_fd.conf at /usr/local/etc/oai/freeDiameter/ and change
the HSS’s IP address located at the last line of the file, inside the ConnectPeer parameter.

ConnectPeer= "hss.testbed.lan" { ConnectTo = "192.168.0.X"; No_SCTP ;

No_IPv6; Prefer_TCP; No_TLS; port = 3868; realm = "testbed.lan";};

#X: HSS’s IP address at eth0

8 - At each EPC element, insert the GTP kernel module by running the following command:

modprobe gtp

7.1.2.3 - Additional Configuration Steps: Enable
the Connection of the LG Nexus Smartphones

This section explains how to modify the OAI EPC in order to enable the connection of the LG
Nexus smartphones available at the testbed. Once all the previous configuration steps are
made (Section 7.1.2.1 or 7.1.2.2), follow the steps below:

1 - At the HSS, as sudo, open the MySQL database with the command below. Enter with the
hsspass password when asked.

mysql -u hssuser -p

2 - Once inside the MySQL command line, select the OAI database with the following
command:

use oai_db;

© FUTEBOL Consortium 2016-2019 Page 35 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

3 - Update the users table with the Nexus’s USIM card data of all the FUTEBOL UFMG
phones, through the queries below:

update users set imei = 353626072597862 where imsi = 208920100001102;

update users set imei = 353626073075272 where imsi = 208920100001103;

update users set imei = 353626072478972 where imsi = 208920100001104;

update users set imei = 353626072151181 where imsi = 208920100001105;

update users set imei = 353626072151264 where imsi = 208920100001106;

update users set imei = 353626072167914 where imsi = 208920100001107;

update users set imei = 353626072526127 where imsi = 208920100001108;

update users set users.key = 0xACF088F7E311233C47DA6AD8FD3F4429 where imsi = 208920100001102;

update users set users.key = 0x1F2D5A652CFF8879EE62C88909E982CF where imsi = 208920100001103;

update users set users.key = 0xC0F801B040457396075767624E8437D4 where imsi = 208920100001104;

update users set users.key = 0x5324A87995BC49A917B67A0A192A91C0 where imsi = 208920100001105;

update users set users.key = 0x5F8C0C524BEBBD09D41E57F3AE2556BF where imsi = 208920100001106;

update users set users.key = 0xFDFC828E472C42D0FED1E8ED9A5FD4C5 where imsi = 208920100001107;

update users set users.key = 0x1CD4F3D3A33A6ECA5808C879698606CE where imsi = 208920100001108;

update users set Opc = 0x603757709DCA44D64D69337F420589EB where imsi = 208920100001102;

update users set Opc = 0xA109136ED37960178DB6BDF7F88FD498 where imsi = 208920100001103;

update users set Opc = 0x441BCF71EADAA48E2bC2778B9C03EF03 where imsi = 208920100001104;

update users set Opc = 0x0BB7FCED4844F82458ACC6D85671BB74 where imsi = 208920100001105;

update users set Opc = 0xC2428ADA029A0CD57B0201A878ECD9C4 where imsi = 208920100001106;

update users set Opc = 0x67476C8FC23A3E3CC9C49E0893A58E8C where imsi = 208920100001107;

update users set Opc = 0xE1E8F41432CCFAD4AF1CF096F519DECA where imsi = 208920100001108;

4 - Exit the MySQL command line interface with the exit; command.

5 - At the MME, as sudo, open the file emm_send.c at
/home/oai-epc/openair-cn/SRC/NAS/EMM/SAP/ and change all the occurences of
EPS_ATTACH_RESULT_EPS by EPS_ATTACH_RESULT_EPS_IMSI.

6 - Still at the MME, go to the /home/oai-epc/openair-cn/SCRIPTS/ folder and recompile the
MME with the commands below:

cd /home/oai-epc/openair-cn/SCRIPTS/

./build_mme --clean

7.1.3 - Running

This section explains how to run all the EPC elements in the correct order. Once all the EPC
elements are configured, follow the steps below:

1 - At the HSS, inside the /home/oai-epc/openair-cn/SCRIPTS/ folder, run the run_hss script.
You should receive an output similar to this one below:

© FUTEBOL Consortium 2016-2019 Page 36 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

As can be seen in the above output, HSS tries to connect with the MME, but the connection
will fail since MME is not started yet at this point. This is the main reason that the
STATE_CLOSED message is presented at the end of the output. The connection process
will keep being restarted until MME is connected successfully (next step).

2 - At the MME, inside the /home/oai-epc-srslte/openair-cn/SCRIPTS/ folder, run the
run_mme script. The MME should connect to the HSS successfully and you should receive
the following output:

3 - At the SP-GW, inside the /home/oai-epc-srslte/openair-cn/SCRIPTS/ folder, run the
run_spgw script. You should receive an output similar to this one below. A successful
initialization is represented by all interfaces being associated to the DONE state message.

7.2 - EPC (Second Way): Elements running inside
the Same Machine

© FUTEBOL Consortium 2016-2019 Page 37 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

The EPC software, in this way, is available in the same LXC container image. The EPC’s
functions are performed through srsepc, which is part of the srsLTE software suite (see
https://github.com/srsLTE/srsLTE for more details).

7.2.1 - RSPec Description

As stated above, for the EPC, only one machine is needed to be allocated, with an LXC
container that will run srsepc. In order to do this, configure your RSPec file the sliver_type as
raw-wifi and the disk_image as srsepc. The code below shows an RSpec example which
allocates the EPC machine.

<node client_id="EPC" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am+node+51"
>

 <sliver_type name="raw-wifi">
<disk_image

name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+srsepc"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="273.0"
y="170.5"/>
</node>

The EPC can be allocated at any miniPC from the testbed. This can be done according to
the ID specified at the component_id attribute of each node tag with the specific number of
the miniPC. For LXC containers, the ID has the “5X” format, where X represents the miniPC
ID according to its position at the testbed.

In the code above, it can be observed that node 51 was selected to emulate the EPC. This
node was named according to its specific role, using the client_id attribute of the node tag.

7.2.2 - Configuration

1 - Open a terminal window for the EPC and change the hostname to epc. In order to do that
run the following command:

hostname epc

© FUTEBOL Consortium 2016-2019 Page 38 of 53

https://github.com/srsLTE/srsLTE

FUTEBOL – H2020 688941

UFMG Testbed user manual

2 - Open the hostname file at /etc/ and also change the hostname to epc.

3 - Re-open the EPC terminal.

4 - Open the epc.conf file at /root/.default/srslte/ and edit the following lines to enter the IP
address of the container:

mme_bind_addr = 192.168.0.X #EPC’s address at eth0

…

gtpu_bind_addr = 192.168.0.X #EPC’s address at eth0

5 - Add the firewall rules below, through iptables. These rules are needed in order to enable
the UE’s access to the Internet.

iptables -t nat -A POSTROUTING -s 192.168.2.0/24 -o eth0 -j MASQUERADE

iptables -A FORWARD -i srs_spgw_sgi -o eth0 -j ACCEPT

iptables -A FORWARD -o srs_spgw_sgi -i eth0 -j ACCEPT

iptables -t nat -A POSTROUTING -s 192.168.2.0/24 -o virtual0 -j MASQUERADE

iptables -A FORWARD -i srs_spgw_sgi -o virtual0 -j ACCEPT

iptables -A FORWARD -o srs_spgw_sgi -i virtual0 -j ACCEPT

6 - Open the users_db.csv file, at /root/.config/srslte/. If you wish to connect the
USRP-based UEs (see Section 7.4 for more details), comment with “#” all the lines starting
with “nexusue”. Otherwise, if you wish to connect the LG Nexus-based UEs (see Section 7.5
for more details), comment with “#” all the lines starting with “usrpue”.

7.2.3 - Running

1 - Open a terminal window for the EPC. After that, start the EPC software using the the
srsepc command. You should receive an output similar to this one below.

© FUTEBOL Consortium 2016-2019 Page 39 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

7.3 - eNodeB

The eNodeB is available in the same Docker container image as the the srsue software (see
Section 7.4 for more details), which has an USRP as the main resource to create the 4G
connections. The eNodeB’s functions are performed through srsenb respectively, which is
part of the srsLTE software suite (see https://github.com/srsLTE/srsLTE for more details).
Along with any of the EPC scenarios presented at sections 7.1 and 7.2, the experimenter
has a complete 4G LTE stack, which can be modified according to his/her needs.

7.3.1 - RSPec Description

For the UE, configure the sliver_type as raw-wifi and the disk_image as srslte. The code
below shows an RSpec example which allocates the eNodeB.

<node client_id="eNodeB" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am+node+55"
>

 <sliver_type name="raw-wifi">
<disk_image

name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+srslte"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="273.0"
y="170.5"/>
</node>

The eNodeB can be allocated at any miniPC from the testbed. This can be done according
to the ID specified at the component_id attribute of each node tag with the specific number
of the miniPC. For Docker containers, the ID has the “5X” format, where X represents the
miniPC ID according to its position at the testbed.

In the code above, it can be observed that node 55 was selected to emulate the eNodeB.
This node was named according to its specific role, using the client_id attribute of the node
tag.

© FUTEBOL Consortium 2016-2019 Page 40 of 53

https://github.com/srsLTE/srsLTE

FUTEBOL – H2020 688941

UFMG Testbed user manual

7.3.2 - Configuration
1 - Open a terminal window for the eNodeB and change the hostname to enodeb. In order to
do that run the following command:

hostname enodeb

2 - Open the hosts file at /etc/ and also change the hostname to enodeb for the IP
172.17.0.2. After that, put the same hostname inside the hostname file at /etc/.

3 - Re-open the eNodeB terminal. After that, at the eNodeB open the enb.conf file at
/root/.config/srslte/. Change the MME and the eNodeB’s IP addresses at the following
parameters:

...

mme_addr = 192.168.0.X #X: MME’s IP address

gtp_bind_addr = 192.168.0.Y #Y: eNodeB’s IP address at virtual0
s1c_bind_addr = 192.168.0.Y #Y: eNodeB’s IP address at virtual0

...

7.3.2.1 - Additional Configuration Steps: Enable
the Connection of the LG Nexus Smartphones

This section explains how to modify the eNodeB in order to enable the connection of the LG
Nexus smartphones available at the testbed. Once all the previous configuration steps are
made (Section 7.1.3), follow this single step below:

1 - Open the enb.conf file, at /root/.config/srslte/. Change the dl_earfcn parameter from 3400
to 1375.

7.3.3 - Running

This section explains how to run the eNodeB, and considers that the EPC is already running.
Please see sections 7.1.3 or 7.2.3 (depending on which EPC software was configured) for
more details.

1 - At the eNodeB, run the srsenb command. You need to receive a message informing
that the eNodeB has started, as shown below. After this output, type and enter the letter
“t” in order to activate the signal trace for the connected UEs.

© FUTEBOL Consortium 2016-2019 Page 41 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

When the eNodeB starts, it attempts to connect to the EPC’s MME through the SCTP
protocol. At the same time that the message above is shown, the MME must generate
an event indicating that such SCTP connection was done successfully. If the running
EPC software is OAI (see Section 7.1 for more details), the following image is shown
below at the MME terminal:

Right after the SCTP event log at the MME, the STATISTICS table (printed continuously
at the MME’s terminal) should be updated, indicating that one eNodeB is now
connected:

On the other side, if the running EPC software is srsepc (see Section 7.2 for more
details), it is expected the following output at the EPC terminal:

© FUTEBOL Consortium 2016-2019 Page 42 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

7.4 - USRP-based UE

The UE software is available in the same Docker container image as the srsenb software
(see Section 7.3 for more details), which has an USRP as the main resource to create the
4G connections. The UE’s functions are performed through srsue, which is part of the
srsLTE software suite (see https://github.com/srsLTE/srsLTE for more details).

7.4.1 - RSPec Description

For the UE, configure the sliver_type as raw-wifi and the disk_image as srslte. The code
below shows an RSpec example which allocates one UE.

<node client_id="UE" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am+node+58"
>

 <sliver_type name="raw-wifi">
<disk_image

name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+srslte"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="428.5"
y="273.5"/>
</node>

The UE can be allocated at any miniPC from the testbed. This can be done according to the
ID specified at the component_id attribute of each node tag with the specific number of the
miniPC. For Docker containers, the ID has the “5X” format, where X represents the miniPC
ID according to its position at the testbed.

© FUTEBOL Consortium 2016-2019 Page 43 of 53

https://github.com/srsLTE/srsLTE

FUTEBOL – H2020 688941

UFMG Testbed user manual

In the code above, it can be observed that node 58 was selected to emulate the UE. Each
node was named according to its specific role, using the client_id attribute of the node tag.

7.4.2 - Configuration

1 - Open a terminal window for the UE and change the hostname to ue with the command
below. If you want to connect multiple UEs at the same time, use a specific hostname to
each of them (Ex.: ueX, where X is any digit).

hostname ueX

2 - Open the hosts file at /etc/ and also change the hostname to ue for the IP 172.17.0.2.
After that, put the same hostname inside the hostname file at /etc/.

3 - Re-open the UE terminal. The UE’s configuration file is already ready for experiments
with one UE. In other words, the parameters related to the authentication of an UE at the
EPC (the same ones that should be recorded at the SIM card from a smartphone) (see
USIM configuration/[usim] parameters at the /root/.config/srslte/ue.conf file for more details)
are already set up by default, and also match with one entry already stored by default at the
HSS’s database. However, if you allocated other miniPCs to act as an UE, at each additional
UE modify the following parameters at the ue.conf file:

imsi = 20892010000110X #X: Client’s ID (1, 2, 3 or 4)

imei = 3560920407920Y0 #Y: Client’s ID (1, 2, 3 or 4)

7.4.3 - Running
This section explains how to run the UE, as well as how to transmit data between it and the
EPC.

This section considers that the EPC and the eNodeB are already running. Please see
sections 7.1.3 or 7.2.3 (depending on which EPC software was configured) and 7.3 (for the
eNodeB) for more details.

1 - At the UE, run the srsue command. The UE should try to find the 4G cell and
connect with the respective eNodeB. The connection is successful when the UE
receives an IP address from the SP-GW, and the network attach event is logged by the
UE, like it’s shown below:

© FUTEBOL Consortium 2016-2019 Page 44 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

The IP address received by the UE is associated to a tunneling interface named
tun_srsue, which will be used to transmit data between the UE and the eNodeB, both of
them emulated by the USRP. After a successful connection from the UE, the MME must
report some updates in the terminal. If the running EPC software is OAI (see Section 7.1
for more details), the MME should update the STATISTICS table, indicating the
attachment of the new UE:

On the other side, if the running EPC software is srsepc (see Section 7.2 for more
details), is is expected the following similar output at the EPC terminal:

© FUTEBOL Consortium 2016-2019 Page 45 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

From eNodeB’s side it is printed, one time per second, the signal data from the
connected UE, as shown below:

© FUTEBOL Consortium 2016-2019 Page 46 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

2 - In order to transmit data, open another terminal for the UE, and redefine the default
routes and the default MTU (Maximum Transmission Unit) from the tun_srsue interface
with the commands below. The MTU redefinition is needed since frames bigger than
1460 bytes are not accepted by such interface.

route del default gw 172.17.0.1 eth0

route add default gw 192.168.2.1 tun_srsue

ifconfig tun_srsue mtu 1460

The routing table must stay like this:

As shown at the above output, any packet that goes outside the testbed now must be
sent through the tun_srsue interface. The output example below shows ICMP packets
sent to the FUTEBOL website at UFMG.

© FUTEBOL Consortium 2016-2019 Page 47 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

7.5 - UE (LG Nexus-based)

This section explains how to use the LG Nexus smartphones from the testbed in order to
connect them to the 4G network. It is considered that the EPC and the eNodeB are already
running. Please see sections 7.1.3 or 7.2.3 (depending on which EPC software was
configured) and 7.3 (for the eNodeB) for more details.

1 - Allocate the LG Nexus smartphones according to the instructions available at Section 8.
No further configuration is needed.

2 - Access the smartphone through the OpenSTF interface and open the notification menu,
as shown below:

© FUTEBOL Consortium 2016-2019 Page 48 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

3 - Deactivate the Airplane Mode. The smartphone should connect automatically to the 4G
network, as shown below:

8 - Experiments with LG Nexus Smartphones

This feature is recommended for experiments that require the use of one or more mobile
phones, whose control is done remotely.

The scenario for experiments using OpenSTF (see Section 8.1 for more details) is available
in the UFMG FUTEBOL testbed through virtual machine (VM) images, where each VM is
responsible for the administration and orchestration of one LG Nexus smartphone. The user
is able to allocate up to eight smartphones at the same time, being one OpenSTF instance
dedicated to each smartphone. The allocation process of this resource is presented in
sections 8.2 and 8.3, and the running process is presented at Section 8.4.

© FUTEBOL Consortium 2016-2019 Page 49 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

8.1 - OpenSTF Description

OpenSTF is a web application responsible for facilitating the remote access and
manipulation of smartphones, tablets and other electronic devices. Through this application,
it is possible to install new mobile applications, change one or more device’s settings and
use all other available features quickly, efficiently and without direct contact.

Currently, the OpenSTF initiative is maintained by The OpenSTF Project under the "Apache
License, Version 2.0" license. For more information and instructions for using OpenSTF’s
features, the user may refer to the project’s repository (https://github.com/openstf/stf).

8.2 - RSpec Description

To perform the allocation of one VM with OpenSTF (i.e. one LG Nexus smartphone), set the
sliver_type parameter to openstf-vm and the disk_image parameter to openstf. The code
below exemplifies the RSpec to allocate one OpenSTF node.

<node client_id="CellPhone" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am"
component_id="urn:publicid:IDN+futebol.dcc.ufmg.br+authority+am+node+98"
>

 <sliver_type name="openstf-vm">
 <disk_image
name="urn:publicid:IDN+futebol.dcc.ufmg.br+image+openstf"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="273.0"
y="170.5"/>
</node>

OpenSTF can be allocated on any miniPC from the testbed, in the node’s ID range from 90
to 98. This can be done by the node specified in the component_id parameter of the RSpec.
In the example above, it can be seen that node 98 was specified to be allocated for
OpenSTF.

Finally, it is recommended that the client_id parameter be assigned to an exclusive name,
like CellPhone as done in the RSpec example, in order to differ this node from the other
allocated resource types, if it is the case.

© FUTEBOL Consortium 2016-2019 Page 50 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

8.3 - Configuring
In this section it is presented the configuration procedure of the LG Nexus smartphone
resource at the UFMG FUTEBOL testbed, using jFed. In this example, it is applied the
RSpec presented at Section 8.2, that selects node 98 to run the VM image with OpenSTF.

1 - After allocating the resource with jFed, as shown in the image below, right-click under the
node and select the Open SSH terminal option.

2 - With the terminal window already open, accept the addition of the SSH key as requested
by the terminal:

3 - Since OpenSTF is a web application running inside one of the testbed’s miniPCs and
allocated by jFed, it is necessary to redirect the application interface to the user’s local
machine, through port mapping. In order to do this, obtain the authentication command used
at the previous terminal, that is, from SSH_AUTH_SOCK (the beginning of the terminal
output) to "–W %h:%p”.

4 - Close this terminal, and open a new one at your local machine. At this new terminal,
paste the copied command string to open a new ssh section. Before entering the ssh
command, add the port mapping parameters, as shown in red at the example below (you do
not need to change the text in red):

© FUTEBOL Consortium 2016-2019 Page 51 of 53

FUTEBOL – H2020 688941

UFMG Testbed user manual

SSH_AUTH_SOCK=/tmp/ssh-MjwvBqp33rfh/agent.15239; export

SSH_AUTH_SOCK;SSH_AGENT_PID=15241; export SSH_AGENT_PID;

ssh -A -X -i

'/home/fabiopereira/.jFed/login-certs/7ed152e26454840aa5139cd175125910

.pem' mathbr@192.168.0.251 -oPort=22 -oProxyCommand="ssh -i

'/home/fabiopereira/.jFed/login-certs/7ed152e26454840aa5139cd175125910

.pem' -oPort=22 mathbr@150.164.10.23 -W %h:%p" -L 8100:localhost:8100
-L 8100:localhost:8100

8.4 - Running
With the modified SSH access presented at step 4 from Section 8.3, keep the terminal
minimized and open a local browser of your choice. Access the following URL:

http://localhost:8100

All OpenSTF features will be available through this remote browser access. The screen
below shows the initial screen displayed when accessing the above URL. This screen
requests the name and email information of the user that will use the resource. You can
enter any valid email at this screen.

© FUTEBOL Consortium 2016-2019 Page 52 of 53

http://localhost:8100/

FUTEBOL – H2020 688941

UFMG Testbed user manual

After entering a valid name and email, click on Log In and the next available screen lists all
devices available for use. In the case of the UFMG FUTEBOL testbed, each miniPC (each
OpenSTF node) will have one Nexus 5X, as shown in the image below:

With the interface above, the user is able to emulate touch commands at the smartphone,
through his screen presented at the left side. In the right side, it is also possible to, among
other things, upload an Android application, run Shell commands, debug some features and
access the folder browser.

© FUTEBOL Consortium 2016-2019 Page 53 of 53

